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Abstract Atmospheric inverse estimates of gas emissions depend on transport model predictions, hence
driving a need to assess uncertainties in the transport model. In this study we assess the uncertainty in
WRF-STILT (Weather Research and Forecasting and Stochastic Time-Inverted Lagrangian Transport) model
predictions using a combination of meteorological and carbon monoxide (CO) measurements. WRF
configurations were selected to minimize meteorological biases using meteorological measurements of
winds and boundary layer depths from surface stations and radar wind profiler sites across California. We
compare model predictions with CO measurements from four tower sites in California from June 2013
through May 2014 to assess the seasonal biases and random errors in predicted CO mixing ratios. In general,
the seasonal mean biases in boundary layer wind speed (< ~ 0.5m/s), direction (< ~ 15°), and boundary layer
height (< ~ 200m) were small. However, random errors were large (~1.5–3.0m/s for wind speed, ~ 40–60°
for wind direction, and ~ 300–500m for boundary layer height). Regression analysis of predicted and
measured CO yielded near-unity slopes (i.e., within 1.0 ± 0.20) for the majority of sites and seasons, though a
subset of sites and seasons exhibit larger (~30%) uncertainty, particularly when weak winds combined with
complex terrain in the South Central Valley of California. Looking across sites and seasons, these results
suggest that WRF-STILT simulations are sufficient to estimate emissions of CO to up to 15% on annual time
scales across California.

1. Introduction

A variety of methods have been applied to address the problem of accurately monitoring andmapping emis-
sions of greenhouse gasses (GHGs). Bottom-up inventories have approached the problem by aggregating
emission estimates from spatial and temporal distributions of known GHG sources to generate estimates
of total emissions [e.g., van Vuuren et al., 2009]. The bottom-up approach has a variety of strengths but can
be limited by incomplete knowledge of processes that contribute to GHG emissions. On the other hand,
atmospheric inverse modeling is a complementary technique that uses bottom-up emission estimates of
GHGs in conjunction with meteorological Lagrangian transport models to estimate GHG emissions without
requiring complete knowledge of individual sources.

In 2006 the state of California passed landmark legislation in Assembly Bill 32 (AB32), which committed the
state to reducing GHG emissions to 1990 levels by 2020. This has led to focused efforts to measure, quantify,
and mitigate emissions of a variety of key GHGs. One component of this effort was the establishment of
multiple GHG monitoring towers throughout the state. In addition to efforts with regards to GHG mitigation,
concerns about statewide air quality have contributed to monitoring, quantification, and mapping of sources
of a variety of pollutants including carbonmonoxide (CO). While CO has limited impact as a GHG, it does have
specific advantages that make it an ideal candidate to assess the accuracy of atmospheric inverse modeling
and develop estimates of potential biases and limitations in the modeling framework. The first advantage of
CO is that there are few poorly constrained natural sources of emissions in California. Wildfire is a major
natural source [Pfister et al., 2005], and large wildfires are easily identifiable and of limited duration; these
two properties are amenable to straightforward filtering of wildfire contributions to CO observations.
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Additionally, total anthropogenic emissions of CO are tightly coupled to emissions from fuel combustion,
which are inventoried for air quality control by the California Air Resources Board (CARB). These advanta-
geous properties lend themselves to bottom-up estimates of CO emissions with low uncertainty relative to
bottom-up estimates of emissions for other GHGs.

Lagrangian transport models track the transport of particles through the atmosphere. These models have
been successfully used in a wide variety of applications. These applications include tracking intercontinental
transport of pollution plumes [e.g., Yienger et al., 2000; Fiore et al., 2002], assessing atmospheric deposition of
mercury [Holloway et al., 2012], and estimation of atmospheric dispersion of radioactivity [Stohl et al., 2012].
Within California, Lagrangian transport models have been used for tracking pollution and GHG emissions
[e.g., Brioude et al., 2013; Newman et al., 2013]. Lagrangian transport models are invaluable for atmospheric
inverse modeling of GHGs. In atmospheric inverse modeling they are used to estimate residence time
footprints of air parcels reaching an observation point. Combined with estimates of surface emissions, these
footprints provide estimations for the GHG concentration of the parcels. However, Lagrangian transport
models are typically driven by simulated meteorology from regional atmospheric models or atmospheric
fields from reanalysis products and are subject to uncertainties associated with deficiencies in these systems
that must be quantified and accounted for in atmospheric inversions of GHGs [e.g., Nehrkorn et al., 2013;
Rogers et al., 2013; Angevine et al., 2014].

In this study, boundary layer meteorological measurements, tower-based observations of CO mixing ratio,
and bottom-up estimates of CO emissions across California were used to identify, quantify, and reduce biases
and potential errors in the atmospheric inverse modeling framework. There were several specific objectives
that this study addressed: (1) to determine Lagrangian transport model parameterizations by site and season
in California that minimizes predicted CO error; (2) to separate and assess transport model random error and
mean bias in boundary layer winds and boundary layer height; and (3) to accurately constrain estimates of
uncertainty in GHG signal predictions due to a combination of factors including background mixing ratio
estimation, random transport error, and observational uncertainty.

2. Methods

Following earlier emissions studies [Zhao et al., 2009; Jeong et al., 2012a, 2013], we used a Lagrangian trans-
port model to estimate CO mixing ratios at five observation towers in California from June 2013 to May 2014.
Two necessary components of this inversion technique were an atmospheric transport model and prior
emission model, which were used to predict GHG mixing ratios at a target location at a specific time as

K ¼ FE (1)

where K is the vector of predicted mixing ratios, F is the linearized transport solution and each row of F is a
footprint vector of length n (n is the number of grid points) describing the spatial distribution of residence
times for particles tracked backward in time from the target location, and E is an a priori emission vector
of length n providing the spatial distribution of estimated prior emissions using data from an emissionmodel.
Similar to Jeong et al. [2012a, 2013, 2016a, 2016b], this study used the coupled WRF-STILT (Weather Research
and Forecasting and Stochastic Time-Inverted Lagrangian Transport) model to estimate atmospheric trans-
port of GHGs [Lin et al., 2003; Skamarock and Klemp, 2008; Nehrkorn et al., 2010].

In this section we describe the observational data sets used in this study and provide details on the prior esti-
mates of CO emissions in California, the atmospheric transport model, and the observations used to diagnose
atmospheric transport errors. Additionally, the transport error analysis used to generate uncertainty statistics
is described with a summary of how these statistics were propagated through the Lagrangian transport
model. Finally, the methods used to compare measured and predicted CO signals are presented.

2.1. GHG and Meteorological Observation Sites

Greenhouse gas observations in California have been taken at 14 towers spread across California as shown in
Figure 1 (see also supporting information Table 1). Among the 14 GHG sites, hourly mixing ratio measure-
ments of CO were available during June 2013 to May 2014 at the CIT, SBC, and WGC sites, October 2013 to
May 2014 for ARV, and daily measurements of CO were available June 2013 to May 2014 for STR (see
Figure 1b). More detailed information of CO measurements can be found in Text S1 of the supporting infor-
mation [Andrews et al., 2014]. Additionally, we used observations of boundary layer winds and heights from
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four radiosonde locations, seven radar wind profiler stations, and a Doppler wind lidar to assess WRF meteor-
ology and generate error statistics for propagation in STILT. Finally, wind measurements from surface stations
across California and several GHG towers were used to test local WRF model meteorology and filter analysis.
The locations of these measurements are shown in Figure 1a.

When available, wind profiler observations from July 2013 to May 2014 were used to assess errors in bound-
ary layer height (zi) and planetary boundary layer (PBL) winds (supporting information Table S1). These obser-
vations sampled winds throughout the boundary layer at an hourly time step. Estimates of daytime zi were
derived using a combination of automated algorithms and qualitative analysis from wind velocity observa-
tions of subhourly vertical velocity and returned signal strength [Wyngaard and LeMone, 1980; Bianco and
Wilczak, 2002]. This was a manually intensive exercise that required subjective expert judgment [Bianco
et al., 2008]. As such, availability of wind profiler zi data was limited relative to wind data, which were derived
using an established automated algorithm. Additionally, the availability of wind profiler boundary layer

Table 1. Mean Seasonal CO Prediction Error (ppb) at ARV, CIT, SBC, and WGC Sitesa

ARV CIT SBC WGC

JJA NA 17.8 (9.7) �22.0 (15.1) 20.8 (100.3)
[±6.6] [±6.0] [±3.1]

SON �22.6 (41.8) 22.4 (13.8) �17.5 (12.0) �12.5 (25.3)
[±5.3] [±10.4] [±11.2] [±3.6]

DJF �0.5 (1.1) �9.7 (3.9) �3.4 (2.8) 1.6 (2.7)
[±5.0] [±17.9] [±8.9] [±5.6]

MAM 3.9 (17.8) 5.4 (3.8) �16.4 (19.0) 8.7 (69.9)
[±2.0] [±7.9] [±5.4] [±2.1]

aValues in parentheses (top row) represent the mean error as a percentage of the seasonal mean background-
subtracted CO signal. The uncertainty of the mean error is also reported (ppb; in brackets; bottom row).

Figure 1. Locations of (a) meteorological stations; (b) tower observations (purple), radiosondes (green), and wind profilers
(blue); and (c) key regions used in this study. Also shown are computational domains used in WRF-STILT and a priori (d) CO
emissions from California. Note that an outer domain (36 km resolution) that included much of the western part of North
America and the Northeast Pacific Ocean is not shown in this figure (grid extended from ~150°W–90°W to ~17°N–63°N).
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height observations was restricted to periods when a clear convective boundary layer exists. The fraction of
days when wind profiler boundary layer heights were available varied by site and season. For example, at a
wind profiler in Irvine, California, from September 2013 to April 2014, there was a minimum of a single
missing day during August 2013 and a maximum of seven during January 2014. For days when the boundary
layer height observations were available, there were between three to eight observations each day. Similar
data frequency was available at other sites.

The wind profiler network in California has been in a continual state of flux, with profilers only operating for
limited periods of time or experiencing extended downtime. In order to retain spatial coverage of profiler
observations across California we accounted for wind profiler sites that were not operating from June 2013
to May 2014, or were missing months during that period, by filling in monthly data gaps with observations
from prior years and prior corresponding WRF simulations from Jeong et al. [2012a, 2013]). We assumed
that monthly random error statistics were approximately invariant across years but acknowledge that this
was a potential source of error for assessing meteorological uncertainty in the GHG predictions. For locations
withdata duringmultiple yearswe found that the difference in error statistics includingmeanbias and random
error magnitude across years to be significantly smaller than the difference of the same error statistics across
sites. To focus on winds within or near the PBL, we limited our analysis of profiler winds to those observations
that were below 2000m above ground level. These winds directly influence the time atmospheric air parcels
reside in the boundary layer over a given location, which is proportional to the influence surface emissions
from a location have on estimated GHG signal. Finally, we removed outliers in PBL winds and zi by removing
those observations that were greater than three standard deviations from the mean daytime values.

At radiosonde sites within California, observations were generally taken one or two times a day. These obser-
vations extended throughout the troposphere, but as with wind profiler measurements above, we limited our
analysis of wind speed and direction to the portion of observations below 2000m. This is because the
monthly-averaged diurnal convective boundary layer depths are lower than 2000m in California [Bianco
et al., 2011].

Observations of surface wind speed and direction were extracted from the Integrated Surface Database (ISD)
[Smith et al., 2011], California Irrigation Management Information System (CIMIS; http://www.cimis.water.ca.
gov/), and Bay Area Air Quality District databases (BAAQD; http://www.baaqmd.gov/). Although these
measurements were limited to observing winds near the surface, they provided excellent temporal and
spatial coverage across California, with hourly observations available at most sites (Figure 1a).

One element of uncertainty was determining the portion of model-observation error that should be assigned
to observational inaccuracy. Based on error statistics from previous studies we assumed the magnitude of
observational uncertainty for wind measurements to be 1m s�1 [Strach et al., 1987], the uncertainty of zi
measurements to be 200m [Dye et al., 1995], and the uncertainty of CO measurements to be 3 ppb
[Andrews et al., 2014].

2.2. Prior Emission Model Estimates and Background Atmospheric CO Mixing Ratios

To calculate model predictions of CO at the GHG observational sites, a priori estimates of surface emission
rates of CO and atmospheric background mixing ratios of CO are required. We used hourly data provided
by CARB and the European Commission Joint Research Centre and Netherlands Environmental Assessment
Agency (Emission Database for Global Atmospheric Research (EDGAR)). The CARB data were provided hourly
for 2012 with high spatial resolution (~4 km×4 km), and coverage across California and its coastal waters,
while EDGAR provided annual mean CO emission data for 2008 with global coverage at ~10 km resolution.
We found the primary source of variation in CO emissions in California to be differences between weekdays
and weekends. In order to retain these variations for the June 2013 to May 2014 period of interest we used
the 2012 CARB data and a simple selection process. For each month from June 2013 to May 2014 we
constructed a pseudo time series of California emissions by first determining the day of the week each day
falls on. Then if the day was Monday-Friday we selected a random weekday from the corresponding month
in 2012 to represent it. Likewise, if the day was Saturday or Sunday we selected a random weekend day
from the corresponding month in 2012. Repeating this for all months from June 2013 to May 2014 ensured
that all weekday emission estimates corresponded to weekday emissions in the original 2012 data and similar
for weekends.
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The annual mean map of prior emission estimates for California is shown in Figure 1d. Major metropolitan
areas and highways are clearly evident. Outside of California emissions were set to values from the EDGAR
data set which was interpolated to ~4 km resolution. This interpolation was done using a nearest-neighbor
approach to retain sharp gradients that exist in the data set.

In a recent study focused on the Los Angeles Basin, Brioude et al. [2013] compared top-down inversion
estimates of CO emissions from an intensive aircraft campaign with earlier bottom-up CARB estimates of
surface emission rates for Southern California Air Basin (SoCAB). They found that CARB estimates were accu-
rate to ~15% relative to their top-down estimates, with biases dependent on differences between weekday
and weekend emissions. Based on this, we assumed that a priori emissions within each footprint calculation
have a 15% uncertainty associated with them.

To estimate background atmospheric mixing ratio for CO, we followed the procedure of Jeong et al. [2012a]. A
temporally and spatially varying mixing ratio “curtain” of CO was estimated at 130°W using vertical profiles of
CO mixing ratios from aircraft along the West Coast U.S. and Hawaii, as well as marine boundary layer data
from the Cooperative Air Sampling Network (http://www.esrl.noaa.gov/gmd/ccgg/flask.html). For back-
ground observations along the West Coast, particle trajectories were tracked backward in time to 130°W
where they were binned by latitude (10° resolution) and altitude between 3000 and 7000m (1000m resolu-
tion). Below 1000m, time- and space-varying values for the Pacific Ocean from the Cooperative Air Sampling
Network were used. Bins between 1000 and 3000m were calculated by vertical interpolation. Finally, the
background CO signal was estimated for each time step by taking the mean background value across all
particles. The background CO was added to the local signal calculated using footprints and prior emissions
estimates to predict the total CO at each observational site for each hour from 1900–300 UTC.

2.3. The WRF-STILT Transport Model and Simulation Error Analysis

In the WRF-STILT model, Eulerian fields fromWRF are used to drive Lagrangian particle transport in STILT. For
this study we used a series of two-way nested grids in WRF to improve simulation accuracy in key regions of
California (Figure 1d). The horizontal resolutions of these grids were 36, 12, 4, and 1.3 km, respectively. The
outer 36 km grid simulated a region that included much of the western part of North America and the
Northeast Pacific Ocean (not shown; grid extended from ~150°W–90°W and ~17°N–63°N). The 4 km grid
encompassed the majority of California, and two 1.3 km grids were centered on regions surrounding the
San Francisco Bay Area (SFBay) and the metropolitan area of Los Angeles in the Southern California Air
Basin (SoCAB) to improve simulation accuracy in these key regions (Figures 1c and 1d).

Version 3.5.1 of the WRF model was used for all simulations. The boundary and initial conditions were
extracted from the North American Regional Reanalysis data set (NARR) [Mesinger et al., 2006]. The primary
WRF simulations were run from June 2013 to May 2014 using a series of 30 h runs that covered the entire
simulation period. For each of the 30 h runs, data from the initial 6 h were considered to be spin-up and were
discarded in the final analysis [Pillai et al., 2011; Jeong et al., 2013]. The remaining model output fields were
saved hourly.

Due in part to extensive topography generating unique meteorological conditions in California, there have
been multiple studies in recent years that have assessed the ability of a variety of WRF parameterizations
to reproduce observed conditions in the region [Bao et al., 2008; Michelson and Bao, 2008; Angevine et al.,
2012; Jeong et al., 2012b, 2013]. Here we largely follow the WRF setup described in Jeong et al. [2013]. We
parameterized WRF to use 50 vertical levels to minimize errors in boundary layer meteorology over
California’s complex terrain. Radiative transfer used the Rapid Radiative Transfer model (RRTM) scheme for
longwave radiation and the Goddard scheme for shortwave. The Purdue-Lin parameterization was used for
microphysics and the Grell-Devenyi ensemble mass flux scheme for convection. Finally, as described in more
detail below, we tested several combinations of parameterizations for the land surface and planetary bound-
ary layer. For the land surface we used both the Community Land Surface Model (LSM) and Noahmodels and
used the updated Mellor-Yamada-Nakanishi-Niino (MYNN2) and Yonsei University (YSU) parameterizations
for boundary layer physics. The MYNN2 boundary layer parameterization was primarily used, but the YSU
parameterization was selectively used to take advantage of an improved representation of topographic
influences on boundary layer meteorology. The use of these WRF configurations was based on conclusions
from Jeong et al. [2013]. In their study, they showed that transport modeling in California needs multiple
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configurations, and footprints for towers in the Central Valley are distinct from those in Southern California.
The purpose of the multiple configuration was to avoid mean biases in transport modeling. This is particularly
prevalent in the Central Valley where lack of irrigation in certain land surface parameterizations likely leads to
large overestimates of boundary layer height in the region.

To generate emission footprints, each day at each site 500 particles were initialized hourly from 1900 to 300
UTC (1100–1900 local standard time (LST)) in WRF-STILT. Following the work of Jeong et al. [2012a] the trajec-
tories of these particles were calculated and tracked backward in time using WRF-STILT until either (a) the
particles were transported outside the computational domain or (b) 7 days had passed. For each time step,
when the trajectory of a given particle remained within the domain and within the atmospheric boundary
layer, the time the particle spent over a given location and the local boundary layer height was calculated.
By aggregating this information for all particles, footprints (F in equation (1)) were calculated [Lin et al.,
2003]. During each hour that particles were released, the footprint strength at each grid point was combined
with a priori estimates of surface CO emissions to predict local CO signals at observational locations due to
emissions within the computational domain (equation (1)).

In addition to providing time for particles to move away from observational locations and sample remote
regions, tracking the particles for up to 7 days provided sufficient time for a significant fraction of them to
reach 130°W where they were assigned an observationally based CO mixing ratio representing the back-
ground CO for each particle using the Pacific CO curtain described in section 2.2.

Errors and limitations in the WRF representation of atmospheric processes can lead to transport errors in the
STILT prediction of CO at observational sites. If these errors are not accounted for they can contribute to
unrealistic posterior estimates of surface emissions from atmospheric inversions with unrepresentative
uncertainty estimates. Two WRF variables that are of particular importance to our application of the coupled
WRF-STILT included planetary boundary layer height (zi) [Gerbig et al., 2008] and winds within and near the
planetary boundary layer (PBL) [Lin and Gerbig, 2005]. The PBL winds influence both the path that STILT
calculates Lagrangian particles take and the fraction of a particle’s final CO concentration contributed by a
given grid point. The fraction is directly proportional to the length of time a particle spends in the PBL over
a given grid point (i.e., horizontal wind speed). Finally, zi is inversely proportional to the atmospheric mixing
ratio of boundary layer CO due to underlying surface emissions and, thus, the COmixing ratio that Lagrangian
particles in the PBL incorporate.

Due to the importance of zi and PBL winds, errors in WRF’s representation of these fields must be accounted
for in the Lagrangian transport model. WRF-STILT has been constructed to account for transport errors in the
U and V components of PBL winds by assuming that WRF errors (ε) have insignificant mean error and can be
represented by a Gaussian centered at zero with standard deviation equal to the standard deviation of WRF
error relative to observations (σu(ε)) [Lin and Gerbig, 2005]. Previously, errors were assimilated into the STILT
framework by adding an error component (ε) that is representative of PBL wind uncertainty:

u ¼ uþ u
0 þ ε (2)

where u is the overall particle velocity vector, ū is the mean component, and u0 is the turbulent component of
particle velocity. ε was drawn from a Gaussian distribution with mean 0 and standard deviation equal to the
observed standard deviation of boundary layer wind error (σu,v) and decorrelated exponentially as a particle
moved in space or time based on horizontal (lx), vertical (lz), or temporal (lt) length scales [Lin and Gerbig,
2005]. This formulation increased the spread of particles in STILT and allowed estimation of uncertainty from
random WRF transport error, although systematic errors in wind speed and direction were assumed to be
negligible. For regions where systematic errors exist this limits the accuracy of transport estimates and would
be expected to lead to significant biases in CO signal estimates.

In this study, error statistics were generated from monthly time series. Application of equation (2) presented
problems at urban sites that occasionally observed large CO concentrations due to stagnant conditions with
very small wind velocities. Estimating transport error using equation (2) led to systematic biases during these
periods, as slow particles with low wind speed had a high likelihood to increase in wind speed due to the
addition of ε. This artificially moved particles outside of the local urban area and resulted in CO predictions
systematically biased lower than control simulations during periods of low wind speeds and high CO predic-
tions, and hence, unrealistic estimates of transport error that are assumed to be unbiased. To reduce this bias
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we adopted the approach that Gerbig et al. [2008] introduced in STILT for accounting for zi errors in WRF to
use with boundary layer winds. Similar to Lin and Gerbig [2005], Gerbig et al. [2008] assumed a Gaussian error
distribution for zi and neglected the mean error component by assuming it to be small relative to random
error, and the standard deviation of the random error Gaussian (σzi) was set equal to the standard deviation
of WRF zi errors relative to observations. However, Gerbig et al. [2008] scaled σzi by the mean observed zi and
then introduced as amultiplicative factor directly influencing particle mixing ratio, instead of an additive term
as in equation (2). We adapted this for estimating transport error by boundary layer winds by scaling σu,v by
the monthly mean wind speed for each site and applying this value as a multiplicative factor on particle velo-
city in both the U and V directions. This procedure removed the artificial CO bias at low wind speeds. Finally,
following the approach of Lin and Gerbig [2005] we assessed the fraction of uncertainty in CO prediction that
can be attributed to simulated random meteorological errors by calculating the mean difference in variance
of the 500 particle COmixing ratios between a control run with neither boundary layer nor wind error applied
and separate simulations with uncertainty in boundary layer height and wind velocity included.

2.4. Regression Methodology and Data Filtering for CO Analysis

WRF-STILT is a state-of-the-art atmospheric transport model that has been successfully used to estimate
surface emissions in a variety of studies. Additionally, the CARB estimates of surface emissions of CO poten-
tially represent the most accurate and detailed spatially explicit bottom-up prior estimate of surface
emissions available for any gas [Brioude et al., 2013]. However, limitations remain that required periods to
be filtered from the analysis. In this study, the key limitations included meteorological conditions that
violated our assumption that particle trajectories originate from the Pacific Ocean and sample background
mixing ratios of CO at 130W, the representation of wildfires in a priori surface emissions, and limitations
due to periods of WRF meteorology and transport deviating significantly from observed conditions.

To reduce the impact of particle trajectories not reaching 130°W, we excluded CO predictions during periods
when low fractions of the particles’ trajectories reached 130°W. During October 2013 to May 2014 we
removed results from hours when this fraction was less than 0.8. For June 2013 to September 2013 we relaxed
this slightly to 0.7 in order to retain significantly more CO prediction periods due to seasonal shifts in meteor-
ology reducing the fraction of particles reaching the 130°W CO mixing ratio curtain.

Wildfires represent very distinct periods of emissions from relatively small areas. Moreover, the location and
timing of wildfires changes each year. Since the CARB CO prior emission inventory used in this study was
developed for 2012, emissions from wildfires would not be valid for the 2013–2014 period of this study
and were not used. To mitigate the influence of wildfires on our comparison of CO predictions and observa-
tions, we excluded periods when observations appeared to have been influenced by wildfires. The location
and duration of major wildfires were identified using the CALFIRE database for 2013 and 2014 (http://
www.fire.ca.gov/general/firemaps.php). Hourly footprints for each site were inspected to determine the
likelihood that an identified fire could be influencing CO observations. Periods when it was likely that
wildfires were influencing observations were excluded from the analysis. However, it should be noted that
this analysis was limited to relatively large fires included in the CALFIRE database, and the potential impact
of small-localized burns may not have been accounted for.

Regional WRFmeteorological errors were identified using observations of wind speed and direction from ISD,
CIMIS, and BAAQD surface stations near GHG observation towers (within 50 km). Periods when the wind
speed error normalized by observed wind speed exceeded 0.5 or the mean difference in wind direction
between observed and simulated surface winds exceeded 90° were filtered from the analysis. Additionally,
at the ARV GHG measurement site we identified model deficiencies in transport for southeasterly winds
(70–190° east of north) from November 2013 to January 2014, which led to periods of large underestimates
in predicted CO that persisted across all tested boundary layer—land surface model combinations. These
periods were filtered from the CO analysis. We hypothesize that this deficiency may be due to excessive
boundary layer venting of air parcels during these periods due to difficulties in the representation of complex
local topography.

To account for uncertainty in both predicted and observed CO concentration values, we used Type II
regression (geometric linear regression) for all regression estimates in this study. This regression is valid
given that correlation between predictor and predictand is significant. In this study, correlation coefficients
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for all regressions shown were found to be statistically significant (p<= .01). In this regression the sum of
the squared perpendicular deviations is minimized to estimate the regression slope and associated
slope uncertainty.

3. Results
3.1. Evaluation of Meteorology Errors

There are several regions of California that are of particular importance in terms of magnitude of GHG emis-
sions. These include California’s largest urban areas of the San Francisco Bay Area (SFBay) and the Southern
California air basin (SoCAB; which encompasses Los Angeles). Also, extensive agriculture in the Central Valley
(CV) has been shown to generate significant emissions of GHGs associated with livestock and fertilizer (e.g.,
CH4, NO2) [Jeong et al., 2012b, 2013]. Therefore, it is of particular importance to model these regions
accurately and account for errors in boundary layer meteorology. The first column of Figure 2a shows
0–2000m daytime mean monthly values of σu, and the monthly mean errors of WRF wind speed relative
to observations using data from the Sacramento profiler in the CV, the Irvine profiler in SoCAB, and the
Oakland radiosonde station in the SFBay (see Figure 1 for the wind profiler sites associated with individual
GHG sites). We note that some sites (e.g., ARV) may not be well represented by the closest available wind
profiler, potentially resulting in undiagnosed transport errors. For this reason, we compare measured and
predicted CO signals as a further diagnostic to help quantify errors and identify potential transport errors
due tomean biases in meteorology. These stations were selected based on their location and data availability
from June 2013 to May 2014. Supporting information Table S1 presents the seasonal mean and random error
(represented by the standard deviation of model-observation error) of wind speed, wind direction, and
boundary layer height representative of each GHG site. The error statistics in supporting information Table
S1 were calculated using data from WRF-STILT meteorology and observations from profiler or radiosonde
sites with available data nearest to the associated GHG site. There were several inferences that could bemade
from Figure 2. First, the magnitude of the random error (σu) was considerably larger than the magnitude of
the mean error. The only exception to this was July in SFBay, which was likely due to limited numbers of
daytime radiosondes launched (~1 daytime launch each day) during relative to the continuous profiler
measurements, and WRF not properly capturing a synoptic event early in the month. Additionally, the
random error, σu, tended to be at a yearly minimum during the summer. This was due to relatively strong
and stable zonal winds during these months. Finally, inspection of histograms confirmed that the wind errors
were approximately Gaussian about the mean.

One limitation of using wind speed as an assessment of meteorology is that its scalar nature does not account
for errors in wind direction. Errors in WRF wind direction can lead to erroneous STILT particle trajectories and

Figure 2. Monthly mean (black bars) and random (red bars) error for (a) wind speed (m s�1), (b) wind direction (degrees),
and afternoon (1200–1700 LST) (c) boundary layer height (m) for Irvine, Sacramento, and Oakland stations. Wind speed and
wind direction errors are calculated from 0 to 2000m.
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hence unrealistic emission footprints that may not properly sample prior emission estimates in the presence
of sharp gradients in GHG emissions (such as near edges of urban areas or along major highways). The
second column of Figure 2b shows the mean directional error (in degrees) and the standard deviation of
wind direction error (σdir) for the three stations described above. Unlike the CV and SFBay area sites, σdir at
the SoCAB site did not exhibit clear seasonality. Instead, it had consistent values of 60–80°, whereas σdir of
the CV and SFBay sites ranged from ~50 to 60° during the winter to ~10–30° during the summer. At all
sites the mean directional error was small relative to the random error.

For zi the mean error was comparable in magnitude to the random error (Figure 2, third column), and in some
cases such as February and March 2014 for the Sacramento profiler, the mean error exceeded σzi. Also, similar
to the model-data errors in wind speed discussed above, errors in zi did have some seasonality associated
with them. February–May commonly exhibited the greatest mean and random errors across observational
sites, while during July–August mean and random errors in zi were at a minimum. However, due to the
relatively low number of boundary layer height observations available, the significance of this difference
was difficult to assess. Seasonally similar results were obtained at other sites as well (supporting information
Table S1). For our study, this brings into question the validity of the assumption in Gerbig et al. [2008] that the
mean error can be neglected and is a potential source of error in our transport model. As such, errors that
arise from mean transport model bias are reflected in CO signal calculations and contribute to our estimates
of overall transport error through their influence on regression slopes of observed and modeled CO concen-
tration and differences in mean concentrations.

CO emissions are dominated by the major urban centers in SoCAB and SFBay, and agriculturally dominated
portions of the state such as the Central Valley emit relatively small amounts of CO. Therefore, ensuring that
the WRF-STILT model is accurately simulating meteorological conditions in these regions is vital. Figure 3
shows June 2013 to May 2014 time series of surface wind speed and direction for SoCAB and SFBay, and
scatterplots of observed versus simulated boundary layer heights using WRF-STILT parameterized with
MYNN2-Noah. For both SoCAB and SFBay, regression analysis indicates slopes of simulated versus

Figure 3. Simulated and observed zi (1200–1700 LST) scatterplot for (top left) Los Angeles and (top right) San Francisco Bay
area using the Irvine profiler and San Jose State University (SJSU) lidar, respectively. zis from Irvine were available
intermittently from June 2013 to April 2014. SJSU zi data were available from December 2013 to May 2014. The red line
indicates the 1:1 line. June 2013 to May 2014 time series of simulated (red line) and observed (black line) surface wind
speed and direction at surface stations within 50 km of (bottom left) CIT and (bottom right) STR.
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observed zi are within 1 of unity (0.94 ± 0.04 for SoCAB; 0.90 ± 0.03 for SFBay) with relatively small positive
intercepts ~130m. Additionally, inspection of simulated wind speed and direction relative to surface
station observations revealed that WRF-STILT was capturing both seasonal changes and synoptic shifts in
surface winds. Combined, these results give confidence that WRF-STILT was sufficiently simulating
meteorological transport of emissions in key regions.

3.2. Seasonal WRF-STILT CO Predictions and Optimization of WRF Parameterization

At ARV, CIT, SBC, and WGC we assessed the accuracy by which a variety of parameterizations for WRF-STILT
reproduced the observed hourly CO mixing ratios, surface winds, and boundary layer heights (where
available) for June 2013 to May 2014. We found that no single model configuration was sufficient to optimally
capture the CO dynamics across California due to extensive irrigation in the Central Valley and complex topo-
graphy. Instead, we optimized WRF-STILT parameterization on a site-by-site basis. This is described in more
detail in the supporting information (Text S2) [Kueppers et al., 2007; Sacks et al., 2009; Sorooshian et al.,
2011; Harding and Snyder, 2012; Bagley and Miller, 2015]. The specific WRF-STILT land surface and boundary
layer parameterizations used at each CO site in this study are shown in supporting information Table S2.

Using the model configurations in supporting information Table S2, we seasonally analyzed the predicted CO
signal at ARV, CIT, SBC, and WGC for summer 2013 to spring 2014. We used a seasonal time scale to minimize
the impacts of potential modeling biases of individual synoptic meteorological events that can negatively
influence CO predictions for several days and dominate error statistics over shorter time periods. This was
particularly relevant for CO as its sources were primarily constrained to small regions of large anthropogenic
influence such as cities and roads. Therefore, small errors in footprint estimation due to short-term

Figure 4. June 2013 to August 2013 time series and regression for (top row) CIT, (middle row) SBC, and (bottom row)
WGC. Green circles represent predicted CO mixing ratios, and black circles represent observations. Filled circles indicate
that the data were excluded from the regression analysis due to insufficient particle trajectories reaching 130°W (red fill),
poor WRF representation of meteorology (blue fill), or wildfire (magenta fill and triangles).
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meteorological errors can lead to errant estimation of emission sources contributing to observed CO at a
tower. The mean error of WRF-STILT predicted CO normalized by mean observed CO is summarized for all
sites and seasons in Table 1.

At CIT, SBC, andWGC during June–August of 2013 (ARV CO observations were unavailable during this period)
the predicted and observed CO signals (Figure 4) were small relative to fall and winter (Figures 5 and 6). In
June and July there were multiple periods of potential wildfire influence at the southernmost sites (SBC
and CIT), which were excluded from the analysis (magenta triangles in Figures 4–7). However, with the
exception of July and late August for SBC, only small fractions of these months failed to satisfy our criteria
for parcels sampling background conditions at 130°W (blue-filled circles). In the periods when predictions
of CO were retained (open green circles in Figures 4–7), the magnitudes of mean error of predicted CO at
CIT, SBC, andWGC were 10–22 ppb (Table 1). However, the sign of the errors in CO were not consistent across
sites, with simulations overpredicting CO at CIT and WGC and underpredicting CO at SBC. As shown below,
the underprediction of CO at SBC was consistent across all seasons but the range of both measured and
predicted signals were smaller during summer. At CIT and SBC, removing background CO and normalizing
the prediction error of CO by the mean observed CO led to errors in predicted CO between 9 and 15% of
the background-subtracted observed CO during summer of 2013m (Table 1). However at WGC, the

Figure 5. Same as Figure 4 but for September 2013 to November 2014. Additionally, (top row) ARV is included.
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fractional prediction error wasmuch larger. Strong zonal winds and tall boundary layer heights contributed to
CO signals that were typically small (~20 ppb) compared to other sites. Predicted CO was typically larger,
leading to a mean overprediction in CO of 21 ppb. Combined with the consistent underprediction of CO at
SBC, this may suggest that consistent undiagnosed mean transport model bias is influencing CO prediction
for these sites and seasons. Nevertheless, regression analyses showed that overall the predicted and
observed CO were generally consistent with observations across all sites, with slopes close to 1 (within 0.2)
with values of 0.82 ± 0.12 at SBC, 0.89 ± 0.04 at CIT, and 1.07 ± 0.09 at WGC. At WGC and CIT, regression
slopes near unity, small mean bias, and small slope uncertainty indicated that WRF-STILT accurately
captured signal of CO for these sites during summer of 2013. At SBC, the combination of small mean error
in CO, relatively large uncertainty of the regression slope, suggests that while WRF-STILT reproduced the
mean seasonal CO, it did not capture the small summertime variations in CO.

Figure 5 compares the predicted and observed CO signals at ARV, CIT, SBC, andWGC for September-October-
November (SON) of 2013. During the fall, a combination of changes in wind direction, intermittently lowwind
speeds, and small daytime boundary layer depths produced mean CO signals significantly larger than those
found during the summer of 2013. However, the periods of highest CO also tended to be during periods

Figure 6. Same as Figure 5 but for December 2013 to February 2014. Note that blue-filled circles in time series also include
periods of southeasterly winds at ARV.
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when the background sampling criteria were not met, typically due to either very stagnant air masses over
California or meteorological conditions transporting continental instead of Pacific air to the GHG towers.
This was particularly prevalent at CIT and SBC. Wildfires were not factors during the fall at any sites, with
the exception of short periods at SBC and WGC during October. Analysis of regression between observed
and predicted CO revealed strong relationships during SON of 2013. At CIT and SBC the regression slopes
were close to one with small uncertainty (1.05 ± 0.07 for CIT; 0.99 ± 0.08 for SBC). However, at WGC and
ARV the slopes and mean prediction errors (Table 1) indicated WRF-STILT underpredicted CO mixing ratios
at these sites. This was particularly noticeable at ARV where we speculate that intermittent flows and
stagnant conditions in the complex topography at the southern end of the San Joaquin valley may have
contributed to a mean prediction error of CO, which was 23 ppb lower than observed and the slope of the
regression line was 0.71 (±0.06).

Similar to fall, the winter months of December 2013 to February 2014 (DJF) had large predicted and observed
CO relative to spring and summer (Figure 6). Here, however, mean prediction errors were small at all sites,
ranging from�9.7 at CIT to 1.6 ppb at WGC. When normalized by the mean background-subtracted observed
CO, these representedmean errors of only 1–4%. This suggests mean transport errors were likely small during
this season. However, we note a relatively large slope uncertainty (0.81 ± 0.09) and intercept uncertainty

Figure 7. Same as Figure 5 but for March 2014 to May 2014.
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(27.7 ppb± 14.89 ppb) at ARV. As discussed in section 2, we excluded periods of southeasterly winds from the
Mojave desert at ARV between November 2013 and January 2014 that coincided with significant underpre-
diction of CO for all model configurations. This exclusion occurred during a significant fraction of the winter
season (blue-filled circles in Figure 6). The source of this underprediction remains undiagnosed as errors in
regional surface wind speed and direction were not obviously biased during these periods. However, these
periods did typically correspond to periods of slow moving stagnant air in the region. This requires further
analysis, and it is possible that this issue may be influencing periods that were not identified by our crude
exclusion of southeasterly winds from November to January at ARV. SBC exhibited a similarly low regression
slope (0.82 ± 0.03), but this result did not include the extensive exclusion of data as at ARV. At CIT, SBC, and
WGC this was not an issue as evidenced by inspection of the time series, small mean error in CO predictions,
and regression slopes close to one with small uncertainties (~ ± 0.05).

During spring (March–May) tall boundary layer heights and strong zonal winds contributed to small CO
signals at all sites, (Figure 7). Additionally, shifts in prevailing winds and the absence of wildfires contributed
to only a small fraction of the CO predictions requiring exclusion. With the exception of SBC, seasonal mean
CO was overpredicted by 4–9 ppb across all sites. At SBC, seasonal mean CO was again underpredicted
(�16.4 ppb). Also, at all sites the regression slopes were less than 1 and ranged from 0.81 at SBC to 0.94 at
WGC. However, as discussed in the following section, small CO signals at ARV and WGC during these months
may have led to small errors in background estimates of CO exerting relatively large influences on
regression results.

Although problematic periods remain, the combination of seasonal biases in predicted CO typically smaller
than 15 ppb and slopes of regression lines within 0.20 of unity for most sites and seasons (in most cases
consistent within the uncertainty) lends confidence to WRF-STILT’s ability to accurately predict CO and hence
other GHGs at our observational towers. Interpretation of these results requires mention of some sources
of potential uncertainty that may influence predictions of CO including random error in the transport
model, uncertainty in the background CO concentration curtain, and limitations in the bottom-up CO emis-
sion model.

3.3. Background and Random Meteorological Error Analysis

We estimated the potential impact of uncertainty in background estimates of CO using observations and
WRF-STILT CO predictions at the STR tower site (Figure 1b). STR is a tall (sample stream intake at 232m)
coastal site in San Francisco, and its observational footprint commonly samples relatively clean oceanic air,
with minimal local influence on observed CO. As a result, STR was used to estimate potential uncertainty in
background CO. We restricted the observational periods used for this analysis to those times when two
requirements were met: (1) The surface wind measured at several coastal and offshore buoy stations near
STR had to be consistently westerly for 8 h preceding an observation, and (2) the difference between the total
simulated CO and background CO at STR was required be less than 5 ppb (indicating minimal continental
influence). Unlike ARV, CIT, SBC, and WGC where hourly CO data exist, CO observations were only taken once
a day at STR for most days from June 2013 to May 2014 (October 2013 excluded). After filtering the data using
the above requirements, 35% of the available observations were retained (74 individual days), with themajor-
ity of the days retained being during nonwinter months due to seasonal shifts in prevailing wind direction.

Comparing the filtered STR CO observational data with corresponding WRF-STILT simulated CO revealed
a mean error in simulated background CO of 4.5 ppb ± 1.4 ppb, with a root-mean-square error (RMSE)
of 13.1 ppb. At sites during seasons with small observed mixing ratios of CO, such as WGC during June-
July-August (JJA), and both ARV andWGC during March-April-May (MAM) the estimated RMSE of background
CO was comparable to the total RMSE of simulated CO (31.8 ppb at WGC for JJA; 19.4 ppb at ARV for MAM;
20.2 ppb at WGC for MAM). Although the mean error in background CO was less than 5 ppb, the relatively
large RMSE indicated that a large fraction of the random CO error at sites during seasons with small observed
CO may be attributed to uncertainty in background CO mixing ratios.

Next, we examined the random component of uncertainty in predicted CO. Table 2 presents the RMSE of CO
as a percentage of the mean CO signal associated with propagating random wind and boundary layer height
errors using the error statistics given in supporting information Table S1. We found that the random errors
associated with uncertainty in wind and boundary layer height ranged from 0 to 70 ppb depending on the
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site and season. These errors corresponded to 0–77% of the observed RMSE with mean biases removed
(Table 2). The largest errors associated with meteorological uncertainties were during the winter months.
Additionally, the largest fraction of error associated with random meteorological errors was almost
always at CIT. (30–50% of RMSE). Since the influence of imposed random zi and wind errors reduces with
distance from the tower sites, footprints that are influenced by remote regions will be less influenced by
local uncertainty in meteorology and associated strongly heterogeneous urban emissions. It is also
interesting to note the large influence of meteorological errors on ARV during DJF (77% of total RMSE).
This strong sensitivity during DJF may provide some insight into the difficulties of simulating CO at this
site during winter months. Finally, the influence of random meteorological uncertainty at WGC is minimal
during summer and fall. This was likely due to strong zonal winds during these seasons causing the SFBay
region to be the primary influence on CO at WGC. Since the SFBay region is sufficiently distant from WGC
and the CO signal has small variability, the application of local random errors on the effective footprint of
WGC is small.

When we combined the random meteorological uncertainty with uncertainty associated with estimated
background CO (RMSE= 13.1 ppb) and estimated observational uncertainty (assumed to be 3 ppb), these
uncertainties accounted for between 39 and 87% of the total RMSE at ARV and WGC but only 23–51% of
the total RMSE at CIT and SBC (Table 2). The remaining uncertainty was likely due to a combination of
undiagnosed systematic deficiencies in WRF-STILT transport that led to mean biases in CO prediction,
limitations in our assumption that a priori CO emissions have minimal error (including short-term variability)
within the tower footprints, and errors associated with unresolved subgrid scale processes (aggregation
error). There is also a possibility that the error statistics derived for each GHG site were not sufficiently
representative of meteorological uncertainty. This could be due to error statistics for each GHG site being
calculated from atmospheric profiler or radiosonde measurements that may be a significant distance from
the GHG site (Figure 1b) andmay be derived from prior years for cases where observations were not available
for 2013–2014.

4. Discussion

We have assessed the magnitude of meteorological errors in WRF by region and season using the most
comprehensive set of surface and boundary layer observations available, estimated CO bias and random
error at four sampling sites in California, and constrained the influence of errors in background signal and
transport by propagating observed random errors in WRF-STILT. This was motivated by the assumption that
error in a priori estimates of CO emissions was small relative to other GHGs, such as CO2, CH4, and N2O, and
could hence be used to constrain the influence of background and transport model error on predicted
emissions that encompass key regions of California. In this section we discuss the implications of this work
for atmospheric inverse modeling of other GHGs in California and the limitations of our results.

First, our analysis of boundary layer meteorology for GHG sites across California showed that the mean errors
associated with wind speed, wind direction, and boundary layer height were small ( ~0.5m/s, < ~15°,
and<~200m, respectively). Additionally, the small mean biases in predicted CO concentration suggest

Table 2. CO Mixing Ratio Uncertainty Due To Random Error of Boundary Layer Height and Boundary Layer Winds Added
in Quadrature (in ppb), and Uncertainty as a Percentage of Seasonal RMSE of CO Prediction (in Parentheses)a

ARV CIT SBC WGC

JJA NA 16.1 (28) 9.6 (18) 0.3 (1)
[0.37] [0.32] [0.43]

SON 3.2 (9) 28.1 (39) 8.4 (12) 1.7 (6)
[0.39] [0.43] [0.23] [0.51]

DJF 25.3 (77) 69.4 (50) 35.6 (47) 12.6 (29)
[0.87] [0.51] [0.50] [0.43]

MAM 2.9 (15) 33.6 (47) 10.9 (22) 1.9 (9)
[0.71] [0.51] [0.35] [0.67]

aAlso shown is the CO uncertainty due to the combined uncertainty in boundary layer height, wind speed,
observational uncertainty (assumed 3 ppb), and background uncertainty (~13.1 ppb) as a fraction of the seasonal
RMSE for predicted CO (in brackets; bottom row).
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that mean biases in transport meteorology are small or that mean transport biases are offset by errors in prior
emissions or background concentration estimates. There was also some seasonality and spatial variability in
the results that should be taken into account in studies of other GHGs. In particular, random errors in bound-
ary layer meteorology tended to be minimized during summer months and largest during the winter when
intermittent synoptic events were dominant.

We found that the optimal parameterizations for key WRF-STILT boundary layer and land surface representa-
tions changed by season and site across California. In particular, changes in these parameterizations were
necessary to capture influences of complex topography at southern California sites and address the impact
of irrigation on boundary layer heights in irrigated agricultural regions like the Central Valley. This suggests
that WRF-STILT parameterizations that have been optimized for one location or season should not be
assumed to be directly transferrable to other sites in very different locations and still expect best results. It
also suggests that incorporating irrigation into all WRF-STILT configurations should be a priority for studies
of regions where irrigation is prevalent.

Filtering transport model predictions based on surface meteorology of wind speed and direction, in addition
to standard fire and background trajectory filtering, reduced transport model error and improved prediction
of CO concentrations at the GHG towers. This is not currently a standard practice for transport model applica-
tion. However, it is unreasonable to expect accurately modeled footprints for periods with significant errors in
modeled meteorology, which can contribute to undiagnosed errors in GHG inversions. This filtering metho-
dology represents a straightforward way to reduce the major inconsistencies in local meteorology and
improve transport model predictions.

Using the WRF-STILT parameterizations that best represented local meteorology, we found the mean bias of
predicted CO relative to observations to be within 15 ppb for most sites and seasons across California and
observed CO-simulated CO regression slopes to be near unity (1.0 ± 0.20). This indicated that WRF-STILT
was successful in both generating predicted CO mixing ratios with small biases and capturing the dynamics
necessary to simulate CO observations that can change on diurnal, synoptic, and seasonal time frames. This
gives confidence in the capability for WRF-STILT to simulate the dynamics of other GHGs for most seasons
and sites across California with minimal mean biases. This suggests that either mean biases in transport
meteorology are small or are offset by deficiencies in prior emissions or background concentration estimates.
However, there are periods when important uncertainties remain and need to be treated with care. In parti-
cular, the winter months seem to present problems at several sites (i.e. ARV and SBC) that require additional
analysis to determine if deficiencies at these sites were due to limitations in a priori emission estimates or if
improved model physics are needed to accurately capture the observed GHG dynamics in the absence of
extensive data filtering. Additionally, the development of more sites with sufficiently precise CO measure-
ments would be useful for constraining and evaluating errors in transport and a priori emission estimates.

We have constrained the potential influence of random errors in background CO, observational error, and
uncertainty in meteorology at observational sites. Overall, the observational error was found to be minimal
relative to the uncertainty of background CO and meteorology, and combined these sources of uncertainty
were between 35 and 85% of the RMSE. Background uncertainty was dominant at sites with small seasonal
CO signals such as WGC during spring and summer, and ARV during spring and fall. Meteorological uncertain-
ties were dominant at CIT, likely due to its urban location, and were largest during the winter at all sites. ARV
was shown to be particularly sensitive to meteorological uncertainty during the winter, which may provides
some guidance for improving the season’s CO prediction.

Finally, we provide an approximate estimate of the likely mean bias in inverse model estimate of CO
emissions across California due to systematic terrors in predicted transport variables. Here we observe that
atmospheric inversions typically multiplicatively scale prior emissions for multiple areas (air basins or pixels)
so as minimize the weighted difference between predicted signals and background-subtracted observations
[e.g., Jeong et al., 2013]. To first order, this amounts to optimizing the slope of predicted versus measured
mixing ratios, and hence, the multiplicative error of an atmospheric inversion will be roughly equivalent to
the deviation from unity of the regression slope between observed and predicted GHGs. For example, at
CIT the deviation of regression slopes from unity range from 0.05 to 0.11, indicating potential uncertainty
in the atmospheric inversion of GHGs at this location of ~10%. We note that while we do not have an
independent estimate of systematic error in regional CO emissions, we might expect that the mean bias in
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predicted versus measured CO will represent an upper limit provided there is not a systematic correlation
between transport model bias and CO emission bias. Ideally, we would directly assess the bias of emission
estimates and transport independently using precisely known emissions with passive tracers. However, the
absence of such data on annual time scales over large regions precludes this, so we retain the assumption
that systematic transport and emission error does not offset. This is partially supported by our results that
demonstrated that improved simulation of surface wind speed, wind direction, and boundary height
concurrently improved CO concentration estimates. Therefore, given the above approximation, we
estimate the mean fractional bias and its uncertainty for regions and California wide as the weighted sum
of slopes obtained across sites and seasons, where weights are estimated directly from the uncertainty in
regression slope for each site and season shown in Table 3 using standard methods for propagation of
errors [e.g., Bevington, 1969]. Combining results from CIT and SBC for SoCAB and WGC and ARV for the
Central Valley, we estimate weighted annual mean slope biases of �0.10 ± 0.04 and �0.10 ± 0.05 for SoCAB
and the Central Valley, respectively. Taking an upper bound on the uncertainty, these results indicate that
on an annual basis the uncertainty associated with atmospheric inversions of CO across California is likely
close to or smaller than 15%, as above, assuming the errors in the CO emissions maps are not correlated
with errors in the transport model. This overall state-level uncertainty combining the results from
individual sites assumes that the errors in the estimated best fit slopes are uncorrelated, and that the
combined SFBay and CV emissions are approximately equivalent to those from SoCAB. This is supported
by CARB 2012 CO annual emission estimates (ratio of SFBay + CV to SoCAB is 0.99). However, we note that
there is possibility that the errors are correlated either expanding the overall uncertainty or reducing it due
to anticorrelation.
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